Spectral synthesis in spaces invariant with respect to one parameter composition semigroups
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 55-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

If $\varphi_t$ is a continuously differentiate composition semigroup of analytic endomorphisms of the disc $\mathbb D$, then all closed subspaces of $\mathrm{Hol}(\mathbb D)$ invariant with respect to this semigroup (acting by compositions) admit spectral synthesis. Bibliography: 11 titles.
@article{ZNSL_1993_206_a4,
     author = {I. V. Dondoshanskii},
     title = {Spectral synthesis in spaces invariant with respect to one parameter composition semigroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--77},
     year = {1993},
     volume = {206},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a4/}
}
TY  - JOUR
AU  - I. V. Dondoshanskii
TI  - Spectral synthesis in spaces invariant with respect to one parameter composition semigroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 55
EP  - 77
VL  - 206
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a4/
LA  - ru
ID  - ZNSL_1993_206_a4
ER  - 
%0 Journal Article
%A I. V. Dondoshanskii
%T Spectral synthesis in spaces invariant with respect to one parameter composition semigroups
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 55-77
%V 206
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a4/
%G ru
%F ZNSL_1993_206_a4
I. V. Dondoshanskii. Spectral synthesis in spaces invariant with respect to one parameter composition semigroups. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 55-77. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a4/