A direct theorem for strictly convex domains in~$\mathbb C^n$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 151-173
Voir la notice de l'article provenant de la source Math-Net.Ru
For a strictly convex $C^2$-domain $\Omega\subset\mathbb C^n$ and a function $f\in\Lambda^a(\Omega)$ holomorphic in $\Omega$, we construct polynomials $P_n$, $\deg P_n\le N$, such that $|f(z)-P_n(z)|\le CN^{-a}$, $z\in\overline\Omega$. Bibliography: 12 titles.
@article{ZNSL_1993_206_a12,
author = {N. A. Shirokov},
title = {A direct theorem for strictly convex domains in~$\mathbb C^n$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--173},
publisher = {mathdoc},
volume = {206},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a12/}
}
N. A. Shirokov. A direct theorem for strictly convex domains in~$\mathbb C^n$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 151-173. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a12/