Some extremal problems for circular polygons
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 127-136
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result of this paper is the solution of the following problem posed by J. Hersch (see [1]): find the maximum of conformal radii in the family of all hyperbolic polygons with $n$, $n\ge3$, sides. It is proved that the maximum is attained on the regular hyperbolic polygon. Bibliography: 5 titles.
@article{ZNSL_1993_206_a10,
author = {A. Yu. Solynin},
title = {Some extremal problems for circular polygons},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {127--136},
publisher = {mathdoc},
volume = {206},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a10/}
}
A. Yu. Solynin. Some extremal problems for circular polygons. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 127-136. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a10/