Some extremal problems for circular polygons
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 127-136

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is the solution of the following problem posed by J. Hersch (see [1]): find the maximum of conformal radii in the family of all hyperbolic polygons with $n$, $n\ge3$, sides. It is proved that the maximum is attained on the regular hyperbolic polygon. Bibliography: 5 titles.
@article{ZNSL_1993_206_a10,
     author = {A. Yu. Solynin},
     title = {Some extremal problems for circular polygons},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {206},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a10/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Some extremal problems for circular polygons
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 127
EP  - 136
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a10/
LA  - ru
ID  - ZNSL_1993_206_a10
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Some extremal problems for circular polygons
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 127-136
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a10/
%G ru
%F ZNSL_1993_206_a10
A. Yu. Solynin. Some extremal problems for circular polygons. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 127-136. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a10/