Estimations of norms of powers of functions in certain Banach spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 15-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic estimates of norms of powers of analytic functions in certain Banach spaces are obtained. For a function $\varphi$ analytic in the closed unit disc and such that $\sup|\varphi(z)|=1$, it is shown that there exist constants $C,c$ and $\alpha$ depending on $\varphi$ and the Banach space $X$ such that for every $n$ $$ cn^\alpha\le\|\varphi^n\|_X\le Cn^\alpha. $$ The cases in which $X$ is the space $l^p_A$ or the Besov space are considered. Bibliography: 4 titles.
@article{ZNSL_1993_206_a1,
     author = {M. Yu. Blyudze and S. M. Shimorin},
     title = {Estimations of norms of powers of functions in certain {Banach} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--32},
     publisher = {mathdoc},
     volume = {206},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a1/}
}
TY  - JOUR
AU  - M. Yu. Blyudze
AU  - S. M. Shimorin
TI  - Estimations of norms of powers of functions in certain Banach spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 15
EP  - 32
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a1/
LA  - ru
ID  - ZNSL_1993_206_a1
ER  - 
%0 Journal Article
%A M. Yu. Blyudze
%A S. M. Shimorin
%T Estimations of norms of powers of functions in certain Banach spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 15-32
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a1/
%G ru
%F ZNSL_1993_206_a1
M. Yu. Blyudze; S. M. Shimorin. Estimations of norms of powers of functions in certain Banach spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 15-32. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a1/