Covariant noncommutative differential geometry
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 85-91
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the $R$-matrix formalism of the quantum inverse scattering method to formulate the noncommutative differential geometry for a noncommutative analog of the algebra of functions on a linear space. The sources of nonuniqueness are pointed out. The case of super-spaces is briefly discussed. Bibliography: 23 titles.
@article{ZNSL_1993_205_a6,
author = {P. P. Kulish},
title = {Covariant noncommutative differential geometry},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {85--91},
publisher = {mathdoc},
volume = {205},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a6/}
}
P. P. Kulish. Covariant noncommutative differential geometry. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 85-91. http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a6/