Covariant noncommutative differential geometry
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 85-91

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the $R$-matrix formalism of the quantum inverse scattering method to formulate the noncommutative differential geometry for a noncommutative analog of the algebra of functions on a linear space. The sources of nonuniqueness are pointed out. The case of super-spaces is briefly discussed. Bibliography: 23 titles.
@article{ZNSL_1993_205_a6,
     author = {P. P. Kulish},
     title = {Covariant noncommutative differential geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--91},
     publisher = {mathdoc},
     volume = {205},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a6/}
}
TY  - JOUR
AU  - P. P. Kulish
TI  - Covariant noncommutative differential geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 85
EP  - 91
VL  - 205
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a6/
LA  - ru
ID  - ZNSL_1993_205_a6
ER  - 
%0 Journal Article
%A P. P. Kulish
%T Covariant noncommutative differential geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 85-91
%V 205
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a6/
%G ru
%F ZNSL_1993_205_a6
P. P. Kulish. Covariant noncommutative differential geometry. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 85-91. http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a6/