The asymptotics of interlacing sequences and the growth of continual Young diagrams
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 21-29

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a series of concrete results establishing a somewhat unexpected connection between the asymptotic representation theory of symmetric groups and the classical results for one-dimensional problems of mathematical physics and function theory. In particular: 1) The universal character of the division of roots for a wide class of orthogonal polynomials is shown. 2) A connection between the Plancherel measure of the infinite symmetric group and Markov's moment problem is established. 3) Asymptotics of the Plancherel measure turns out to be connected with the soliton-like solution of the simplest quasilinear equation, $$ R'_t+RR'_x=0. $$ Bibliography: 14 titles.
@article{ZNSL_1993_205_a2,
     author = {S. Kerov},
     title = {The asymptotics of interlacing sequences and the growth of continual {Young} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {205},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a2/}
}
TY  - JOUR
AU  - S. Kerov
TI  - The asymptotics of interlacing sequences and the growth of continual Young diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 21
EP  - 29
VL  - 205
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a2/
LA  - en
ID  - ZNSL_1993_205_a2
ER  - 
%0 Journal Article
%A S. Kerov
%T The asymptotics of interlacing sequences and the growth of continual Young diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 21-29
%V 205
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a2/
%G en
%F ZNSL_1993_205_a2
S. Kerov. The asymptotics of interlacing sequences and the growth of continual Young diagrams. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 21-29. http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a2/