Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 166-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There being no precise definition of the quantum integrability, the separability of variables can serve as its practical substitute. For any quantum integrable model generated by the Yangian $\mathcal Y[sl(3)]$ the canonical coordinates and the conjugated operators are constructed which satisfy the “quantum characteristic equation” (quantum counterpart of the spectral algebraic curve for the $L$-operator. The coordinates c6nstructed provide a local separation of variables. The conditions are enlisted which are necessary for the global separation of variables to take place. Bibliography: 17 titles.
@article{ZNSL_1993_205_a11,
     author = {E. K. Sklyanin},
     title = {Separation of variables in the quantum integrable models related to the {Yangian} $\mathcal Y[sl(3)]$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--178},
     year = {1993},
     volume = {205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/}
}
TY  - JOUR
AU  - E. K. Sklyanin
TI  - Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 166
EP  - 178
VL  - 205
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/
LA  - en
ID  - ZNSL_1993_205_a11
ER  - 
%0 Journal Article
%A E. K. Sklyanin
%T Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 166-178
%V 205
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/
%G en
%F ZNSL_1993_205_a11
E. K. Sklyanin. Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 166-178. http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/