Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 166-178

Voir la notice de l'article provenant de la source Math-Net.Ru

There being no precise definition of the quantum integrability, the separability of variables can serve as its practical substitute. For any quantum integrable model generated by the Yangian $\mathcal Y[sl(3)]$ the canonical coordinates and the conjugated operators are constructed which satisfy the “quantum characteristic equation” (quantum counterpart of the spectral algebraic curve for the $L$-operator. The coordinates c6nstructed provide a local separation of variables. The conditions are enlisted which are necessary for the global separation of variables to take place. Bibliography: 17 titles.
@article{ZNSL_1993_205_a11,
     author = {E. K. Sklyanin},
     title = {Separation of variables in the quantum integrable models related to the {Yangian} $\mathcal Y[sl(3)]$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--178},
     publisher = {mathdoc},
     volume = {205},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/}
}
TY  - JOUR
AU  - E. K. Sklyanin
TI  - Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 166
EP  - 178
VL  - 205
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/
LA  - en
ID  - ZNSL_1993_205_a11
ER  - 
%0 Journal Article
%A E. K. Sklyanin
%T Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 166-178
%V 205
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/
%G en
%F ZNSL_1993_205_a11
E. K. Sklyanin. Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 166-178. http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a11/