Circular method and modular theory
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 3-5

Voir la notice de l'article provenant de la source Math-Net.Ru

A close relation between the classical circular method and modern modular theory is shown by the example of binary problems in number theory. Bibliography: 5 titles.
@article{ZNSL_1993_205_a0,
     author = {A. I. Vinogradov},
     title = {Circular method and modular theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--5},
     publisher = {mathdoc},
     volume = {205},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a0/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - Circular method and modular theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 3
EP  - 5
VL  - 205
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a0/
LA  - ru
ID  - ZNSL_1993_205_a0
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T Circular method and modular theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 3-5
%V 205
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a0/
%G ru
%F ZNSL_1993_205_a0
A. I. Vinogradov. Circular method and modular theory. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 13, Tome 205 (1993), pp. 3-5. http://geodesic.mathdoc.fr/item/ZNSL_1993_205_a0/