The boundary distortion and extremal problems in certain classes of univalent functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 115-142
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class $S_1(\tau)$, $0\tau1$, of functions $f(z)=\tau z+a_2z^2+\dots$ that are regular and univalent in the unit disk $U$ and have $|f(z)|1$. We obtain sharp estimates for the $1$-measure of the sets $\{\theta\colon|f(e^{i\theta})|=1\}$. As a corollary, for the familiar class $S$ we find Kolmogorov-type estimates for the sets $\{\theta\colon|f(e^{i\theta})|>M\}$, $M>1$, and prove inequalities for the harmonic measure, which are similar to those by Carleman–Milloux and Baernstein. We also consider problems on distortion of fixed systems of boundary arcs in the classes of functions that are regular (or meromorphic) and univalent in the disk or circular annulus. Bibliography: 22 titles.
@article{ZNSL_1993_204_a8,
author = {A. Yu. Solynin},
title = {The boundary distortion and extremal problems in certain classes of univalent functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {115--142},
publisher = {mathdoc},
volume = {204},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a8/}
}
TY - JOUR AU - A. Yu. Solynin TI - The boundary distortion and extremal problems in certain classes of univalent functions JO - Zapiski Nauchnykh Seminarov POMI PY - 1993 SP - 115 EP - 142 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a8/ LA - ru ID - ZNSL_1993_204_a8 ER -
A. Yu. Solynin. The boundary distortion and extremal problems in certain classes of univalent functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 115-142. http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a8/