Fundamental rectangles of admissible lattices
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 82-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Lambda$ be a unimodular lattice in $\mathbb R^2$, $\mu$ a homogeneous minimum of $\Lambda$; let $P(a,b)\subset\mathbb R^2$ be a rectangle with vertices at the points $(a,0),\dots,(0,b)$, $P(a,b)+X$ its image under the translation by a vector $X\in\mathbb R^2$. We prove that there exists a sequence of positive numbers $v_1 with $2\sqrt2\mu^{-2}v_{k-1}>v_k$, such that for $u>\mu$ the rectangle $P(u,v_k)+X$ contains $T=S(P)+R$ points of $\Lambda$, where $|R|<5$; here $S(P)$ is the area of the rectangle. Bibliography: 4 titles.
@article{ZNSL_1993_204_a5,
     author = {Kh. Kh. Ruzimuradov},
     title = {Fundamental rectangles of admissible lattices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--89},
     year = {1993},
     volume = {204},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a5/}
}
TY  - JOUR
AU  - Kh. Kh. Ruzimuradov
TI  - Fundamental rectangles of admissible lattices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 82
EP  - 89
VL  - 204
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a5/
LA  - ru
ID  - ZNSL_1993_204_a5
ER  - 
%0 Journal Article
%A Kh. Kh. Ruzimuradov
%T Fundamental rectangles of admissible lattices
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 82-89
%V 204
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a5/
%G ru
%F ZNSL_1993_204_a5
Kh. Kh. Ruzimuradov. Fundamental rectangles of admissible lattices. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 82-89. http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a5/