Behavior of the $L$-functions of cusp forms at~$s=1$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 37-54
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(z)$ be a Hecke eigenform in the space $S_{2k}(\Gamma)$ of holomorphic $\Gamma$-cusp forms of even weight $2k$, $\Gamma=\mathrm{SL}(2,\mathbb Z)$; let $L_f(s)$ be the $L$-function of $f(z)$. The goal of this paper is to obtain some results on $L_f(1)$ as $k$ increases. In particular, we prove an analogue of the classical Landau theorem in the theory of Dirichlet $L$-functions and (under a very plausible hypothesis) an analogue of the famous Siegel theorem. Bibliography: 15 titles.
@article{ZNSL_1993_204_a2,
author = {E. P. Golubeva and O. M. Fomenko},
title = {Behavior of the $L$-functions of cusp forms at~$s=1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--54},
publisher = {mathdoc},
volume = {204},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a2/}
}
E. P. Golubeva; O. M. Fomenko. Behavior of the $L$-functions of cusp forms at~$s=1$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 37-54. http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a2/