Behavior of the $L$-functions of cusp forms at~$s=1$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 37-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be a Hecke eigenform in the space $S_{2k}(\Gamma)$ of holomorphic $\Gamma$-cusp forms of even weight $2k$, $\Gamma=\mathrm{SL}(2,\mathbb Z)$; let $L_f(s)$ be the $L$-function of $f(z)$. The goal of this paper is to obtain some results on $L_f(1)$ as $k$ increases. In particular, we prove an analogue of the classical Landau theorem in the theory of Dirichlet $L$-functions and (under a very plausible hypothesis) an analogue of the famous Siegel theorem. Bibliography: 15 titles.
@article{ZNSL_1993_204_a2,
     author = {E. P. Golubeva and O. M. Fomenko},
     title = {Behavior of the $L$-functions of cusp forms at~$s=1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {204},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a2/}
}
TY  - JOUR
AU  - E. P. Golubeva
AU  - O. M. Fomenko
TI  - Behavior of the $L$-functions of cusp forms at~$s=1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 37
EP  - 54
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a2/
LA  - ru
ID  - ZNSL_1993_204_a2
ER  - 
%0 Journal Article
%A E. P. Golubeva
%A O. M. Fomenko
%T Behavior of the $L$-functions of cusp forms at~$s=1$
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 37-54
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a2/
%G ru
%F ZNSL_1993_204_a2
E. P. Golubeva; O. M. Fomenko. Behavior of the $L$-functions of cusp forms at~$s=1$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 37-54. http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a2/