The class numbers of real quadratic fields of discriminant $4p$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 11-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For $p$ prime, $p=3\,(\operatorname{mod}4)$, we study the expansion of $\sqrt p$ into a continued fraction. In particular, we show that in the expansion $$ \sqrt p=[n,\overline{l_1,\dots,l_L,l,l_L,\dots,l_1,2n}] $$ $l_1,\dots,l_L$ satisfy at least $L/2$ linear relations. We also obtain a new lower bound for the fundamental unit $\varepsilon_p$ of the field $\mathbb Q(\sqrt p)$ for almost all $p$ under consideration: $\varepsilon_p>p^3/\log^{1+\delta}p$ for all $p\ge x$ with $O(x/\log^{1+\delta}x)$ possible exceptions (here $\delta>0$ is an arbitrary constant), and an estimate for the mean value of the class number of $\mathbb Q(\sqrt p)$ with respect to averaging over $\varepsilon_p$: $$ \sum_{p\equiv3\,(\operatorname{mod}4),\ \varepsilon_p\le x}h(p)=O(x). $$ Bibliography: 11 titles.
@article{ZNSL_1993_204_a1,
     author = {E. P. Golubeva},
     title = {The class numbers of real quadratic fields of discriminant~$4p$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--36},
     year = {1993},
     volume = {204},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - The class numbers of real quadratic fields of discriminant $4p$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 11
EP  - 36
VL  - 204
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a1/
LA  - ru
ID  - ZNSL_1993_204_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T The class numbers of real quadratic fields of discriminant $4p$
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 11-36
%V 204
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a1/
%G ru
%F ZNSL_1993_204_a1
E. P. Golubeva. The class numbers of real quadratic fields of discriminant $4p$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 11-36. http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a1/