The Hardy--Littlewood conjecture. An algebraic approach
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 5-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the well-known Hardy–Littlewood equation, which is related to the Waring problem, in terms of roots of polynomials of the corresponding degree. The Hardy–Littlewood conjecture is confirmed for cubic fields. Bibliography: 3 titles.
@article{ZNSL_1993_204_a0,
     author = {A. I. Vinogradov},
     title = {The {Hardy--Littlewood} conjecture. {An} algebraic approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {204},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a0/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - The Hardy--Littlewood conjecture. An algebraic approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 5
EP  - 10
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a0/
LA  - ru
ID  - ZNSL_1993_204_a0
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T The Hardy--Littlewood conjecture. An algebraic approach
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 5-10
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a0/
%G ru
%F ZNSL_1993_204_a0
A. I. Vinogradov. The Hardy--Littlewood conjecture. An algebraic approach. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 11, Tome 204 (1993), pp. 5-10. http://geodesic.mathdoc.fr/item/ZNSL_1993_204_a0/