On the Holmgren--John uniqueness theorem for the wave equation with piecewise analytic coefficients
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 113-136

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a uniqueness theorem is proved for the wave equation in the domain $Q^{2T}=\Omega\times(0,2T)$, where $\Omega$ is a piecewise analytic Riemannian manifold (Riemannian polyhedron). Initial data are assumed to be given on a part $\Gamma_0\times(0,2T)$ of the space-time boundary of the cylinder $Q^{2T}$, $\Gamma_0\in\partial\Omega$. The uniqueness of a weak solution is proved “in the large”, in a domain formed by the corresponding characteristics of the wave equation.
@article{ZNSL_1992_203_a9,
     author = {Ya. V. Kurylev},
     title = {On the {Holmgren--John} uniqueness theorem for the wave equation with piecewise analytic coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--136},
     publisher = {mathdoc},
     volume = {203},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a9/}
}
TY  - JOUR
AU  - Ya. V. Kurylev
TI  - On the Holmgren--John uniqueness theorem for the wave equation with piecewise analytic coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 113
EP  - 136
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a9/
LA  - ru
ID  - ZNSL_1992_203_a9
ER  - 
%0 Journal Article
%A Ya. V. Kurylev
%T On the Holmgren--John uniqueness theorem for the wave equation with piecewise analytic coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 113-136
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a9/
%G ru
%F ZNSL_1992_203_a9
Ya. V. Kurylev. On the Holmgren--John uniqueness theorem for the wave equation with piecewise analytic coefficients. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 113-136. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a9/