On the Holmgren--John uniqueness theorem for the wave equation with piecewise analytic coefficients
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 113-136
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a uniqueness theorem is proved for the wave equation in the domain $Q^{2T}=\Omega\times(0,2T)$, where $\Omega$ is a piecewise analytic Riemannian manifold (Riemannian polyhedron). Initial data are assumed to be given on a part $\Gamma_0\times(0,2T)$ of the space-time boundary of the cylinder $Q^{2T}$, $\Gamma_0\in\partial\Omega$. The uniqueness of a weak solution is proved “in the large”, in a domain formed by the corresponding characteristics of the wave equation.
@article{ZNSL_1992_203_a9,
author = {Ya. V. Kurylev},
title = {On the {Holmgren--John} uniqueness theorem for the wave equation with piecewise analytic coefficients},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--136},
publisher = {mathdoc},
volume = {203},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a9/}
}
TY - JOUR AU - Ya. V. Kurylev TI - On the Holmgren--John uniqueness theorem for the wave equation with piecewise analytic coefficients JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 113 EP - 136 VL - 203 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a9/ LA - ru ID - ZNSL_1992_203_a9 ER -
Ya. V. Kurylev. On the Holmgren--John uniqueness theorem for the wave equation with piecewise analytic coefficients. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 113-136. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a9/