Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 21-50
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of reconstruction of a Riemannian manifold via it's dynamical Dirichlet to Newmann response operator is considered. The approach for solving the problem is based upon the boundary control theory method. The procedure of reconstruction uses nonstationary Gaussian beams (quasiphotons). The essential feature of the procedure is locality. The class of manifolds which may be reconstructed by this approach is described in terms of the boundary control theory. It includes for instance all analitical manifolds.
@article{ZNSL_1992_203_a3,
author = {M. I. Belishev and A. P. Katchalov},
title = {Boundary controls and quasiphotons in {a~Riemannian} manifold reconstruction problem via dynamical data},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {21--50},
publisher = {mathdoc},
volume = {203},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/}
}
TY - JOUR AU - M. I. Belishev AU - A. P. Katchalov TI - Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 21 EP - 50 VL - 203 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/ LA - ru ID - ZNSL_1992_203_a3 ER -
%0 Journal Article %A M. I. Belishev %A A. P. Katchalov %T Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data %J Zapiski Nauchnykh Seminarov POMI %D 1992 %P 21-50 %V 203 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/ %G ru %F ZNSL_1992_203_a3
M. I. Belishev; A. P. Katchalov. Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 21-50. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/