Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 21-50

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of reconstruction of a Riemannian manifold via it's dynamical Dirichlet to Newmann response operator is considered. The approach for solving the problem is based upon the boundary control theory method. The procedure of reconstruction uses nonstationary Gaussian beams (quasiphotons). The essential feature of the procedure is locality. The class of manifolds which may be reconstructed by this approach is described in terms of the boundary control theory. It includes for instance all analitical manifolds.
@article{ZNSL_1992_203_a3,
     author = {M. I. Belishev and A. P. Katchalov},
     title = {Boundary controls and quasiphotons in {a~Riemannian} manifold reconstruction problem via dynamical data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--50},
     publisher = {mathdoc},
     volume = {203},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. P. Katchalov
TI  - Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 21
EP  - 50
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/
LA  - ru
ID  - ZNSL_1992_203_a3
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. P. Katchalov
%T Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 21-50
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/
%G ru
%F ZNSL_1992_203_a3
M. I. Belishev; A. P. Katchalov. Boundary controls and quasiphotons in a~Riemannian manifold reconstruction problem via dynamical data. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 21-50. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a3/