The construction of Gaussian beams satisfying to the wave equation with exponential exactness
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 17-20
Voir la notice de l'article provenant de la source Math-Net.Ru
A function $V$ having Gaussian beam asymptotic (the frequency $\omega\to+\infty$) is obtained. The expression $(\Delta+\frac{\omega^2}{c^2(x)})V$ is exponentialy small in the the neighbourhood of axial ray of Gaussian beam. The velocity $c(x)$ is analitical.
@article{ZNSL_1992_203_a2,
author = {V. M. Babich},
title = {The construction of {Gaussian} beams satisfying to the wave equation with exponential exactness},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--20},
publisher = {mathdoc},
volume = {203},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a2/}
}
TY - JOUR AU - V. M. Babich TI - The construction of Gaussian beams satisfying to the wave equation with exponential exactness JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 17 EP - 20 VL - 203 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a2/ LA - ru ID - ZNSL_1992_203_a2 ER -
V. M. Babich. The construction of Gaussian beams satisfying to the wave equation with exponential exactness. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 17-20. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a2/