Case of an exact integrability of $SH$-wave equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 12-16
Voir la notice de l'article provenant de la source Math-Net.Ru
The equation for $SH$-wave is considered
$$
\frac\partial{\partial x}\left(\mu\frac{\partial w}{\partial x}\right)+\frac\partial{\partial y}\left(\mu\frac{\partial w}{\partial y}\right)=\rho\frac{\partial^2w}{\partial t^2},
$$
when $\mu=a(x)b(y)$, $\rho=a(x)b(y)(c(x)+d(y))$ ($a,b,c,d$ are known functions). The problem of interaction of a whispering gallery wave with a vertical interface is solved in explicit form.
@article{ZNSL_1992_203_a1,
author = {V. M. Babich},
title = {Case of an exact integrability of $SH$-wave equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {12--16},
publisher = {mathdoc},
volume = {203},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a1/}
}
V. M. Babich. Case of an exact integrability of $SH$-wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 12-16. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a1/