Integro-differential equations of the convolution on a~finite interval with a~kernel having logarithmic singularity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 5-11

Voir la notice de l'article provenant de la source Math-Net.Ru

Integro-differential equations of the convolution are examined $$ \frac{d^{2n}}{dx^{2n}}\int^1_{-1}\left(a((x-t)^2)\ln|x-t|+b((x-t)^2)\right)\varphi(t)\,dt=f(x). $$ Here functions $a(s)$ and $b(s)$ belong to $C^\infty$ and decrease at infinity. The Fourier transform of the kernel is supposed to be sectorial, i.e. it has a positive projection on some direction in complex plane. The theorem of existence and uniqueness of solutions in spaces defined by the representation $$ \varphi(t)=(1-t^2)^{\delta_n}\psi(t)\qquad\delta_n=n-1+\varepsilon,\quad\varepsilon>0,\quad\psi\in C^1[-1,1], $$ is proved. The proprieties of continuity of solutions are established.
@article{ZNSL_1992_203_a0,
     author = {I. V. Andronov},
     title = {Integro-differential equations of the convolution on a~finite interval with a~kernel having logarithmic singularity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {203},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a0/}
}
TY  - JOUR
AU  - I. V. Andronov
TI  - Integro-differential equations of the convolution on a~finite interval with a~kernel having logarithmic singularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 5
EP  - 11
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a0/
LA  - ru
ID  - ZNSL_1992_203_a0
ER  - 
%0 Journal Article
%A I. V. Andronov
%T Integro-differential equations of the convolution on a~finite interval with a~kernel having logarithmic singularity
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 5-11
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a0/
%G ru
%F ZNSL_1992_203_a0
I. V. Andronov. Integro-differential equations of the convolution on a~finite interval with a~kernel having logarithmic singularity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a0/