Integro-differential equations of the convolution on a finite interval with a kernel having logarithmic singularity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 5-11
Cet article a éte moissonné depuis la source Math-Net.Ru
Integro-differential equations of the convolution are examined $$ \frac{d^{2n}}{dx^{2n}}\int^1_{-1}\left(a((x-t)^2)\ln|x-t|+b((x-t)^2)\right)\varphi(t)\,dt=f(x). $$ Here functions $a(s)$ and $b(s)$ belong to $C^\infty$ and decrease at infinity. The Fourier transform of the kernel is supposed to be sectorial, i.e. it has a positive projection on some direction in complex plane. The theorem of existence and uniqueness of solutions in spaces defined by the representation $$ \varphi(t)=(1-t^2)^{\delta_n}\psi(t)\qquad\delta_n=n-1+\varepsilon,\quad\varepsilon>0,\quad\psi\in C^1[-1,1], $$ is proved. The proprieties of continuity of solutions are established.
@article{ZNSL_1992_203_a0,
author = {I. V. Andronov},
title = {Integro-differential equations of the convolution on a~finite interval with a~kernel having logarithmic singularity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--11},
year = {1992},
volume = {203},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a0/}
}
TY - JOUR AU - I. V. Andronov TI - Integro-differential equations of the convolution on a finite interval with a kernel having logarithmic singularity JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 5 EP - 11 VL - 203 UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a0/ LA - ru ID - ZNSL_1992_203_a0 ER -
I. V. Andronov. Integro-differential equations of the convolution on a finite interval with a kernel having logarithmic singularity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 22, Tome 203 (1992), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_1992_203_a0/