On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 158-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Solutions of the two-dimensional initial boundary-value problem for the Navier–Stokes equations are approximated by solutions of the initial boundary-value problem \begin{gather} \frac{\partial v^\varepsilon}{\partial t}-\nu\Delta v^\varepsilon+v^\varepsilon_kv^\varepsilon_{x_k}+\frac12v^\varepsilon\operatorname{div}v^\varepsilon-\frac{1}{\varepsilon}\operatorname{grad}\operatorname{div}w^\varepsilon=f,\enskip \frac{\partial w^\varepsilon}{\partial t}+\alpha w^\varepsilon=v^\varepsilon,\enskip \nu,\alpha>0 \tag{9} \\ v^\varepsilon|_{t=0}=v_0^\varepsilon(x),\quad w^\varepsilon|_{t=0}=0,\quad x\in\Omega;\quad v^\varepsilon|_{\partial\Omega}=w^\varepsilon|_{\partial\Omega}=0,\quad t\geqslant0, \tag{10} \end{gather} We study the proximity of the solutions of these problems in suitable norms and also the proximity of their minimal global $B$-attractors. Similar results are valid for two-dimensional equations of motion of the Oldroyd fluids (see Eqs. (38) and (41)) and for three-dimensional equations of motion of the Kelvin–Voight fluids (see Eqs. (39) and (43)). Bibliography: 17 titles.
@article{ZNSL_1992_202_a9,
     author = {A. P. Oskolkov},
     title = {On semilinear dissipative systems of equations with a small parameter that arise in solution of the {Navier{\textendash}Stokes} equations, equation of motion of the {Oldroyd} fluids, and equations of motion of the {Kelvin{\textendash}Voight} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--184},
     year = {1992},
     volume = {202},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 158
EP  - 184
VL  - 202
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/
LA  - ru
ID  - ZNSL_1992_202_a9
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 158-184
%V 202
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/
%G ru
%F ZNSL_1992_202_a9
A. P. Oskolkov. On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 158-184. http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/