On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 158-184
Voir la notice de l'article provenant de la source Math-Net.Ru
Solutions of the two-dimensional initial boundary-value problem for the Navier–Stokes equations are approximated by solutions of the initial boundary-value problem
\begin{gather}
\frac{\partial v^\varepsilon}{\partial t}-\nu\Delta v^\varepsilon+v^\varepsilon_kv^\varepsilon_{x_k}+\frac12v^\varepsilon\operatorname{div}v^\varepsilon-\frac{1}{\varepsilon}\operatorname{grad}\operatorname{div}w^\varepsilon=f,\enskip
\frac{\partial w^\varepsilon}{\partial t}+\alpha w^\varepsilon=v^\varepsilon,\enskip
\nu,\alpha>0
\tag{9}
\\
v^\varepsilon|_{t=0}=v_0^\varepsilon(x),\quad w^\varepsilon|_{t=0}=0,\quad x\in\Omega;\quad
v^\varepsilon|_{\partial\Omega}=w^\varepsilon|_{\partial\Omega}=0,\quad t\geqslant0,
\tag{10}
\end{gather}
We study the proximity of the solutions of these problems in suitable norms and also the proximity of their minimal global $B$-attractors. Similar results are valid for two-dimensional equations of motion of the Oldroyd fluids (see Eqs. (38) and (41)) and for three-dimensional equations of motion of the Kelvin–Voight fluids (see Eqs. (39) and (43)). Bibliography: 17 titles.
@article{ZNSL_1992_202_a9,
author = {A. P. Oskolkov},
title = {On semilinear dissipative systems of equations with a small parameter that arise in solution of the {Navier--Stokes} equations, equation of motion of the {Oldroyd} fluids, and equations of motion of the {Kelvin--Voight} fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {158--184},
publisher = {mathdoc},
volume = {202},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/}
}
TY - JOUR AU - A. P. Oskolkov TI - On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 158 EP - 184 VL - 202 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/ LA - ru ID - ZNSL_1992_202_a9 ER -
%0 Journal Article %A A. P. Oskolkov %T On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids %J Zapiski Nauchnykh Seminarov POMI %D 1992 %P 158-184 %V 202 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/ %G ru %F ZNSL_1992_202_a9
A. P. Oskolkov. On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 158-184. http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/