On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 158-184

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions of the two-dimensional initial boundary-value problem for the Navier–Stokes equations are approximated by solutions of the initial boundary-value problem \begin{gather} \frac{\partial v^\varepsilon}{\partial t}-\nu\Delta v^\varepsilon+v^\varepsilon_kv^\varepsilon_{x_k}+\frac12v^\varepsilon\operatorname{div}v^\varepsilon-\frac{1}{\varepsilon}\operatorname{grad}\operatorname{div}w^\varepsilon=f,\enskip \frac{\partial w^\varepsilon}{\partial t}+\alpha w^\varepsilon=v^\varepsilon,\enskip \nu,\alpha>0 \tag{9} \\ v^\varepsilon|_{t=0}=v_0^\varepsilon(x),\quad w^\varepsilon|_{t=0}=0,\quad x\in\Omega;\quad v^\varepsilon|_{\partial\Omega}=w^\varepsilon|_{\partial\Omega}=0,\quad t\geqslant0, \tag{10} \end{gather} We study the proximity of the solutions of these problems in suitable norms and also the proximity of their minimal global $B$-attractors. Similar results are valid for two-dimensional equations of motion of the Oldroyd fluids (see Eqs. (38) and (41)) and for three-dimensional equations of motion of the Kelvin–Voight fluids (see Eqs. (39) and (43)). Bibliography: 17 titles.
@article{ZNSL_1992_202_a9,
     author = {A. P. Oskolkov},
     title = {On semilinear dissipative systems of equations with a small parameter that arise in solution of the {Navier--Stokes} equations, equation of motion of the {Oldroyd} fluids, and equations of motion of the {Kelvin--Voight} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--184},
     publisher = {mathdoc},
     volume = {202},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 158
EP  - 184
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/
LA  - ru
ID  - ZNSL_1992_202_a9
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 158-184
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/
%G ru
%F ZNSL_1992_202_a9
A. P. Oskolkov. On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 158-184. http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a9/