An approach to solving nonlinear algebraic systems.~2
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 71-96

Voir la notice de l'article provenant de la source Math-Net.Ru

New methods of solving nonlinear algebraic systems in two variables are suggested, which make it possible to find all zero-dimensional roots without knowing initial approximations. The first method reduces the solution of nonlinear algebraic systems to eigenvalue problems for a polynomial matrix pencil. The second method is based on the rank factorization of a two-parameter polynomial matrix, allowing, us to compute the GCD of a set of polynomials and all zero-dimensional roots of the GCD. Bibliography: 10 titles.
@article{ZNSL_1992_202_a3,
     author = {V. N. Kublanovskaya and V. N. Simonova},
     title = {An approach to solving nonlinear algebraic systems.~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--96},
     publisher = {mathdoc},
     volume = {202},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a3/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
AU  - V. N. Simonova
TI  - An approach to solving nonlinear algebraic systems.~2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 71
EP  - 96
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a3/
LA  - ru
ID  - ZNSL_1992_202_a3
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%A V. N. Simonova
%T An approach to solving nonlinear algebraic systems.~2
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 71-96
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a3/
%G ru
%F ZNSL_1992_202_a3
V. N. Kublanovskaya; V. N. Simonova. An approach to solving nonlinear algebraic systems.~2. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part IX, Tome 202 (1992), pp. 71-96. http://geodesic.mathdoc.fr/item/ZNSL_1992_202_a3/