Some consequences of the Lindel\"of conjecture
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 164-176
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that the Lindelöf conjecture is valid in the following quantitative form:
$$
\left|\zeta\left(\frac12+it\right)\right|\leqslant c_0|t|^{\varepsilon(|t|)}
$$
where $\varepsilon(t)$ is a decreasing function, $\varepsilon(2t)\geqslant\frac12\varepsilon(t)$, $\varepsilon(t)\geqslant\frac1{\sqrt{\log t}}$. Then it is proved that for $|t|\geqslant T_0$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant v\right\}$ contains at most $20v\log|t|$ zeros of $\zeta(s)$ if $\frac12\geqslant v\geqslant\sqrt{\varepsilon(t)}$. There exists an absolute constant $A$ such that for $|t|\geqslant T_1$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant A\varepsilon^{1/3}(t)\right\}$ contains at least one zero of $\zeta(s)$.
@article{ZNSL_1992_201_a6,
author = {N. A. Shirokov},
title = {Some consequences of the {Lindel\"of} conjecture},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {164--176},
publisher = {mathdoc},
volume = {201},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/}
}
N. A. Shirokov. Some consequences of the Lindel\"of conjecture. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 164-176. http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/