Some consequences of the Lindelöf conjecture
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 164-176
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose that the Lindelöf conjecture is valid in the following quantitative form: $$ \left|\zeta\left(\frac12+it\right)\right|\leqslant c_0|t|^{\varepsilon(|t|)} $$ where $\varepsilon(t)$ is a decreasing function, $\varepsilon(2t)\geqslant\frac12\varepsilon(t)$, $\varepsilon(t)\geqslant\frac1{\sqrt{\log t}}$. Then it is proved that for $|t|\geqslant T_0$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant v\right\}$ contains at most $20v\log|t|$ zeros of $\zeta(s)$ if $\frac12\geqslant v\geqslant\sqrt{\varepsilon(t)}$. There exists an absolute constant $A$ such that for $|t|\geqslant T_1$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant A\varepsilon^{1/3}(t)\right\}$ contains at least one zero of $\zeta(s)$.
@article{ZNSL_1992_201_a6,
author = {N. A. Shirokov},
title = {Some consequences of the {Lindel\"of} conjecture},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {164--176},
year = {1992},
volume = {201},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/}
}
N. A. Shirokov. Some consequences of the Lindelöf conjecture. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 164-176. http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/