Some consequences of the Lindel\"of conjecture
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 164-176

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that the Lindelöf conjecture is valid in the following quantitative form: $$ \left|\zeta\left(\frac12+it\right)\right|\leqslant c_0|t|^{\varepsilon(|t|)} $$ where $\varepsilon(t)$ is a decreasing function, $\varepsilon(2t)\geqslant\frac12\varepsilon(t)$, $\varepsilon(t)\geqslant\frac1{\sqrt{\log t}}$. Then it is proved that for $|t|\geqslant T_0$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant v\right\}$ contains at most $20v\log|t|$ zeros of $\zeta(s)$ if $\frac12\geqslant v\geqslant\sqrt{\varepsilon(t)}$. There exists an absolute constant $A$ such that for $|t|\geqslant T_1$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant A\varepsilon^{1/3}(t)\right\}$ contains at least one zero of $\zeta(s)$.
@article{ZNSL_1992_201_a6,
     author = {N. A. Shirokov},
     title = {Some consequences of the {Lindel\"of} conjecture},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--176},
     publisher = {mathdoc},
     volume = {201},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Some consequences of the Lindel\"of conjecture
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 164
EP  - 176
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/
LA  - ru
ID  - ZNSL_1992_201_a6
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Some consequences of the Lindel\"of conjecture
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 164-176
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/
%G ru
%F ZNSL_1992_201_a6
N. A. Shirokov. Some consequences of the Lindel\"of conjecture. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 164-176. http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a6/