Boundary distortions and change of module under extension of a doubly connected domain
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 157-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{F}(p,r)$ denote the class of univalent analytic functions $f(z)$ in the domain $\mathcal{K}(\rho)=\{z: \rho|z|1\}$, satisfying $|f(z)|=1$ for $|z|=1$ and $r|f(z)|1$ for $z\in\mathcal{K}(\rho)$. Let $f(z;\rho,r)$ map $\mathcal{K}(\rho)$ onto the domain $\mathcal{K}(r)\setminus[r,s]$ and let $f(z;\rho,r)\in\mathcal{F}(\rho,r)$. THEOREM 2. Let $f(z)\in\mathcal{F}(\rho,r)$, $f(z)\ne e^{i\alpha}f(z;\rho,r)$, $\alpha\in\mathbb{R}$, and $\Phi(t)$ be a strictly convex monotone function of $t>0$. Then $$ \int_0^{2\pi}\Phi(|f'(e^{i\theta})|)d\theta\int_0^{2\pi}\Phi(|f'(e^{i\theta};\rho,r)|)d\,\theta. $$ The proof of this theorem is based on the Golusin–Komatu equation. If $E$ is a continuum in the disk $U_R=\{z: |z|$, then $M(R,E)$ denotes the conformal module of the doubly connected component of $U_R\setminus E$; let $\varepsilon(m)=\{E: \overline{U}_r\subset E\subset U_1,\ M(1, E)=m^{-1}\}$. PROBLEM. Find the maximum of $M(R, E)$, $R>1$, and the minimum of cap $E$ over all $E$ in $\varepsilon(m)$. This problem was posed by V. V. Koževnikov in a lecture to the seminare on geometric function theory at the Kuban university in 1980, and by D. Gaier (see [2]). The solution of this problem is given by the following theorem. THEOREM 3. Let $E^*=\overline{U}_m\cup[m, s]$. If $R>1; E, E^*\in\varepsilon(m)$ and $E\ne e^{i\alpha}E^*$, $\alpha\in\mathbb{R}$, then $$ M(R, E)(R,E^*),\quad \mathrm{cap}\,E^*\mathrm{cap}\,E. $$ A similar statement is also proved for continue lying in the half-plane. ADDENDUM. When the paper was ready for publication, the author obtained a letter from R. Laugesen with the information that he had also proved Theorem 3 by a different method based on results of A. Baernstein. II on potential theory.
@article{ZNSL_1992_201_a5,
     author = {A. Yu. Solynin},
     title = {Boundary distortions and change of module under extension of a doubly connected domain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--163},
     publisher = {mathdoc},
     volume = {201},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a5/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Boundary distortions and change of module under extension of a doubly connected domain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 157
EP  - 163
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a5/
LA  - ru
ID  - ZNSL_1992_201_a5
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Boundary distortions and change of module under extension of a doubly connected domain
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 157-163
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a5/
%G ru
%F ZNSL_1992_201_a5
A. Yu. Solynin. Boundary distortions and change of module under extension of a doubly connected domain. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 157-163. http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a5/