Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 5-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi$ be a unimodular function on the unit circle $\mathbb{T}$ and let $K_p(\varphi)$ denote the kernel of the Toeplitz operator $T_\varphi$ in the Hardy space $H^p$, $p\geqslant1: K_p(\varphi)\stackrel{\mathrm{def}}{=}\{f\in H^p: T_\varphi f=0\}$. Suppose $K_p(\varphi)\ne\{0\}$. The problem is to find out how the smoothness of the symbol $\varphi$ influences the boundary smoothness of functions in $K_p(\varphi)$. One of the main results is as follows. THEOREM 1. Let $1$, $q+\infty$, $1$, $q^{-1}=p^{-1}+r^{-1}$. Suppose $||\varphi||\equiv1$ on $\mathbb{T}$ and $\varphi\in W_r^1$ (i.e. $\varphi'\in L^r(\mathbb{T})$). Then $K_p(\varphi)\subset W_q^1$. Moreover, for any $\varphi\in K_p(\varphi)$ we have $||f'||_q\leqslant c(p,r)||\varphi'||_r||f||_p$.
@article{ZNSL_1992_201_a0,
     author = {K. M. D'yakonov},
     title = {Kernels of {Toeplitz} operators, smooth functions, and {Bernstein} type inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {201},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a0/}
}
TY  - JOUR
AU  - K. M. D'yakonov
TI  - Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 5
EP  - 21
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a0/
LA  - ru
ID  - ZNSL_1992_201_a0
ER  - 
%0 Journal Article
%A K. M. D'yakonov
%T Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 5-21
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a0/
%G ru
%F ZNSL_1992_201_a0
K. M. D'yakonov. Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a0/