Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 5-21
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varphi$ be a unimodular function on the unit circle $\mathbb{T}$ and
let $K_p(\varphi)$ denote the kernel of the Toeplitz operator $T_\varphi$
in the Hardy space $H^p$, $p\geqslant1: K_p(\varphi)\stackrel{\mathrm{def}}{=}\{f\in H^p: T_\varphi f=0\}$.
Suppose $K_p(\varphi)\ne\{0\}$. The problem is to find out how the smoothness
of the symbol $\varphi$ influences the boundary smoothness of
functions in $K_p(\varphi)$. One of the main results is as follows.
THEOREM 1. Let $1$, $q+\infty$, $1$, $q^{-1}=p^{-1}+r^{-1}$.
Suppose $||\varphi||\equiv1$ on $\mathbb{T}$ and $\varphi\in W_r^1$ (i.e. $\varphi'\in L^r(\mathbb{T})$).
Then $K_p(\varphi)\subset W_q^1$. Moreover, for any $\varphi\in K_p(\varphi)$ we have
$||f'||_q\leqslant c(p,r)||\varphi'||_r||f||_p$.
@article{ZNSL_1992_201_a0,
author = {K. M. D'yakonov},
title = {Kernels of {Toeplitz} operators, smooth functions, and {Bernstein} type inequalities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--21},
publisher = {mathdoc},
volume = {201},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a0/}
}
K. M. D'yakonov. Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 20, Tome 201 (1992), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_1992_201_a0/