New estimates for the Navier--Stokes equations and globally steady approximations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 98-109

Voir la notice de l'article provenant de la source Math-Net.Ru

For the two-dimentional Navier–Stokes equations and a number of their globally steady approximations (Galerkin–Faedo method, discrete in time Galerkin–Faedo method, implicit finite-difference methods ($19_i$)) there obtained new a priori estimates which prove existence of a compact minimal global $B$-attractor for the Navier–Stokes equations (this fact was first proved by the author in 1972, see [1]) as well as for the approximations mentioned. Similar results for many problems of the viscous incompressible fluid theory and continuum mechanics are valid.
@article{ZNSL_1992_200_a9,
     author = {O. A. Ladyzhenskaya},
     title = {New estimates for the {Navier--Stokes} equations and globally steady approximations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--109},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a9/}
}
TY  - JOUR
AU  - O. A. Ladyzhenskaya
TI  - New estimates for the Navier--Stokes equations and globally steady approximations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 98
EP  - 109
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a9/
LA  - ru
ID  - ZNSL_1992_200_a9
ER  - 
%0 Journal Article
%A O. A. Ladyzhenskaya
%T New estimates for the Navier--Stokes equations and globally steady approximations
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 98-109
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a9/
%G ru
%F ZNSL_1992_200_a9
O. A. Ladyzhenskaya. New estimates for the Navier--Stokes equations and globally steady approximations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 98-109. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a9/