Numerical approximation of attractor for Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 91-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is considered the problem of numerical approximation of the minimal global $B$-attractor $\mathfrak{M}$ for the semiflow generated by Navier–Stokes equations in a two-dimentional bounded domain $\Omega$. The suggested method is based on the formula $\mathfrak{M}=\lim\limits_{N\to\infty}G^N$, $G^N$ being a sequence of compact subsets of $L_2(\Omega)$, $G^N\supset\mathfrak{M}$. The procedure for construction of $G^N$ is finite and includes numerical resolution of Navier–Stokes equations by means of Galerkin method along with explicit finite-difference discretization in time.
@article{ZNSL_1992_200_a8,
     author = {I. N. Kostin},
     title = {Numerical approximation of attractor for {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a8/}
}
TY  - JOUR
AU  - I. N. Kostin
TI  - Numerical approximation of attractor for Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 91
EP  - 97
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a8/
LA  - ru
ID  - ZNSL_1992_200_a8
ER  - 
%0 Journal Article
%A I. N. Kostin
%T Numerical approximation of attractor for Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 91-97
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a8/
%G ru
%F ZNSL_1992_200_a8
I. N. Kostin. Numerical approximation of attractor for Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 91-97. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a8/