Viscosity approach to optimal property of $l$-minimal surfaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 71-82

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal property of the solutions to $l$-curvature homogeneous equations is described in viscosity terms.
@article{ZNSL_1992_200_a6,
     author = {N. M. Ivochkina},
     title = {Viscosity approach to optimal property of $l$-minimal surfaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a6/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - Viscosity approach to optimal property of $l$-minimal surfaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 71
EP  - 82
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a6/
LA  - ru
ID  - ZNSL_1992_200_a6
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T Viscosity approach to optimal property of $l$-minimal surfaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 71-82
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a6/
%G ru
%F ZNSL_1992_200_a6
N. M. Ivochkina. Viscosity approach to optimal property of $l$-minimal surfaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 71-82. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a6/