Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 51-61
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main goal of this paper is to prove that any even
Maass cusp waveform $f$ up to a finite dimensional subspace
is represented by some special series
$$
f(z,\overline{z})=c+\sum_{k=2}^\infty a(k_1,k_2,k_3,m_1,m_2,m_3)y^k R^{k_1}(z)Q^{k_2}(z)S^{k_3}\overline{(z,\overline{z})R^{m_1}(z)Q^{m_2}(z)S^{m_3}(z,\overline{z})}\qquad{(1)}
$$
where $6k_1+4k_2+2k_3=k=6m_1+4m_2+2m_3$ and $R(z)=E_6(z)$, $Q(z)=E_4(z)$,
$S(z,\overline{z})+3/\pi y=E_2(z)$ are the analytical Eisenstein series,
$c$, $a(k_1,k_2,k_3,m_1,m_2,m_3)$ are complex coefficients. The same representation (1)
is true for any element $f\in\mathcal{H}$, $f(z)=f(-\overline{z})$, $z\in H$ the upper
half plane, $\mathcal{H}=L_2(PSL(2,\mathbb{Z})\setminus H)$, up to a finite dimensional subspace,
which may be ia trivial (see Theorem 2 and Remark in the end of the paper).
			
            
            
            
          
        
      @article{ZNSL_1992_200_a4,
     author = {A. B. Venkov},
     title = {Some relations between the analytical modular forms and {Maass} waveforms for $PSL(2,\mathbb{Z})$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a4/}
}
                      
                      
                    TY  - JOUR
AU  - A. B. Venkov
TI  - Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 51
EP  - 61
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a4/
LA  - en
ID  - ZNSL_1992_200_a4
ER  - 
                      
                      
                    A. B. Venkov. Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 51-61. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a4/
                  
                