Solvability of initial-boundary value problem for the equations of motion of a viscous compressible baratropic fluid in the spaces $W_2^{2+l,1+l/2}(Q_T)$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 177-186
Voir la notice de l'article provenant de la source Math-Net.Ru
There is presented a new method of estimates of solutions of the Navier–Stokes equations for a viscous compressible barotropic fluid in a bounded domain $\Omega\subset\mathbb{R}^3$ which makes it possible to investigate the problem in a complete scale of anisotropic spaces $W_2^{2+l,1+l/2}(Q_T)$, $Q_T=\Omega\times(0,T)$ with arbitrary $l>1/2$.
@article{ZNSL_1992_200_a17,
author = {V. A. Solonnikov},
title = {Solvability of initial-boundary value problem for the equations of motion of a viscous compressible baratropic fluid in the spaces $W_2^{2+l,1+l/2}(Q_T)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {177--186},
publisher = {mathdoc},
volume = {200},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a17/}
}
TY - JOUR
AU - V. A. Solonnikov
TI - Solvability of initial-boundary value problem for the equations of motion of a viscous compressible baratropic fluid in the spaces $W_2^{2+l,1+l/2}(Q_T)$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 1992
SP - 177
EP - 186
VL - 200
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a17/
LA - ru
ID - ZNSL_1992_200_a17
ER -
%0 Journal Article
%A V. A. Solonnikov
%T Solvability of initial-boundary value problem for the equations of motion of a viscous compressible baratropic fluid in the spaces $W_2^{2+l,1+l/2}(Q_T)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 177-186
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a17/
%G ru
%F ZNSL_1992_200_a17
V. A. Solonnikov. Solvability of initial-boundary value problem for the equations of motion of a viscous compressible baratropic fluid in the spaces $W_2^{2+l,1+l/2}(Q_T)$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 177-186. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a17/