A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 167-176

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper estimate of the module of the deviator of strain tensor at any internal point of an elastic-plastic body is proved. It depends only on $L_2$-norm of the deviator of strain tensor over the domain, occupied by this elastic-plastic body, on $L_p$-norm of the body forces, on parameters of elastic-plastic medium and on the distance to the boundary of the body.
@article{ZNSL_1992_200_a16,
     author = {G. A. Seregin},
     title = {A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--176},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 167
EP  - 176
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/
LA  - ru
ID  - ZNSL_1992_200_a16
ER  - 
%0 Journal Article
%A G. A. Seregin
%T A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 167-176
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/
%G ru
%F ZNSL_1992_200_a16
G. A. Seregin. A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 167-176. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/