A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 167-176
Cet article a éte moissonné depuis la source Math-Net.Ru
An upper estimate of the module of the deviator of strain tensor at any internal point of an elastic-plastic body is proved. It depends only on $L_2$-norm of the deviator of strain tensor over the domain, occupied by this elastic-plastic body, on $L_p$-norm of the body forces, on parameters of elastic-plastic medium and on the distance to the boundary of the body.
@article{ZNSL_1992_200_a16,
author = {G. A. Seregin},
title = {A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {167--176},
year = {1992},
volume = {200},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/}
}
TY - JOUR AU - G. A. Seregin TI - A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 167 EP - 176 VL - 200 UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/ LA - ru ID - ZNSL_1992_200_a16 ER -
%0 Journal Article %A G. A. Seregin %T A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening %J Zapiski Nauchnykh Seminarov POMI %D 1992 %P 167-176 %V 200 %U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/ %G ru %F ZNSL_1992_200_a16
G. A. Seregin. A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 167-176. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a16/