Non-physical sheet for the Friedrichs model
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 149-155
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The way of deducing expansion theorem by resonance states for two-dimensional Friedrichs model $A=\frac1{2i}(U_\varphi-U_\varphi^+)$ is suggested. The construction is based on detail Lax–Phillips analogues of corresponding unitary Friedrichs model $U_\varphi=z\left(1+\frac{2i\alpha}{1-i\alpha}P_\varphi\right)$ perturbed by projector $P_\varphi$, generated by an element $\varphi$, possesing special analytical properties.
			
            
            
            
          
        
      @article{ZNSL_1992_200_a14,
     author = {B. S. Pavlov},
     title = {Non-physical sheet for the {Friedrichs} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--155},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a14/}
}
                      
                      
                    B. S. Pavlov. Non-physical sheet for the Friedrichs model. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 149-155. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a14/
