Non-physical sheet for the Friedrichs model
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 149-155

Voir la notice de l'article provenant de la source Math-Net.Ru

The way of deducing expansion theorem by resonance states for two-dimensional Friedrichs model $A=\frac1{2i}(U_\varphi-U_\varphi^+)$ is suggested. The construction is based on detail Lax–Phillips analogues of corresponding unitary Friedrichs model $U_\varphi=z\left(1+\frac{2i\alpha}{1-i\alpha}P_\varphi\right)$ perturbed by projector $P_\varphi$, generated by an element $\varphi$, possesing special analytical properties.
@article{ZNSL_1992_200_a14,
     author = {B. S. Pavlov},
     title = {Non-physical sheet for the {Friedrichs} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--155},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a14/}
}
TY  - JOUR
AU  - B. S. Pavlov
TI  - Non-physical sheet for the Friedrichs model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 149
EP  - 155
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a14/
LA  - ru
ID  - ZNSL_1992_200_a14
ER  - 
%0 Journal Article
%A B. S. Pavlov
%T Non-physical sheet for the Friedrichs model
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 149-155
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a14/
%G ru
%F ZNSL_1992_200_a14
B. S. Pavlov. Non-physical sheet for the Friedrichs model. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 149-155. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a14/