On uniqueness of solution of the second initial-boundary value problem for non-Nеwtonian politropical filtration equation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 110-117

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniqueness of non-negative solution of the second initial-boundary value problem for the equation $$ u_t-\sum_{i=1}^n\frac{\partial}{\partial x_i}|u|^l|u_{x_i}|^{m-2}u_{x_i}=0,\quad l\geqslant1,\ m\geqslant2,\ n\geqslant2, $$ in the class of functions $\{u: u\in L^\infty(Q_T)\cap C([0,T];L^2(\Omega)), (u^{l/m+1})_{x_i}\in L^m(Q_T)\}$ is established.
@article{ZNSL_1992_200_a10,
     author = {P. Z. Mkrtychian},
     title = {On uniqueness of solution of the second initial-boundary value problem for {non-N{\cyre}wtonian} politropical filtration equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--117},
     publisher = {mathdoc},
     volume = {200},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a10/}
}
TY  - JOUR
AU  - P. Z. Mkrtychian
TI  - On uniqueness of solution of the second initial-boundary value problem for non-Nеwtonian politropical filtration equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 110
EP  - 117
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a10/
LA  - ru
ID  - ZNSL_1992_200_a10
ER  - 
%0 Journal Article
%A P. Z. Mkrtychian
%T On uniqueness of solution of the second initial-boundary value problem for non-Nеwtonian politropical filtration equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 110-117
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a10/
%G ru
%F ZNSL_1992_200_a10
P. Z. Mkrtychian. On uniqueness of solution of the second initial-boundary value problem for non-Nеwtonian politropical filtration equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Tome 200 (1992), pp. 110-117. http://geodesic.mathdoc.fr/item/ZNSL_1992_200_a10/