Nonlocal problems for some class nonlinear dissipative Sobolev type equations
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 91-113
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H_i$, $i=0,1,2,3$ are Hilbert spaces:
$$
H_3\subset H_2\subset H_1\subset H_0, \qquad{(1)}
$$
and imbeddings are compact. Consider in $H_2$ nonlinear abstract
equation
$$
\frac{du}{dt}=Au+K(u)+F(t),\quad t\in\mathbb{R}^+, \qquad{(7)}
$$
and suppose that for operators $A$ and $K(u)$ and external force
$F(t)$ the assumptions (8)–(12) are fulfilled.
In the paper two nonlocal problems for the equation (7)–(12)
are studied:
1. Existence in the large on the semiaxis $\mathbb{R}^+$ solution of
the Cauchy problem (7)–(12) for distinct assumptions about external
force
$F(t): F(t)\in L_\infty(\mathbb{R}^+;H_2)$, $F(t)\in L_2(\mathbb{R}^+;H_2)$,
$F(t)\in S_2(\mathbb{R}^+;H_2)$ (see Theorems 1–3).
2. Existence in the large time-periodic solutions of the
equation (7)–(11), (15) with time-periodic external force
$F(t)\in\tilde{L}_{2,\omega}(\mathbb{R}^+;H_2)$ and $F(t)\in\tilde{L}_{\infty,\omega}(\mathbb{R}^+;H_2)$
(see Theorems 6–7)
The examples of nonlinear dissipative Sobolev type equations
(2)–(6) which are reduced to the abstract nonlinear equation (7)–(11) are given:
\item[] equations of the motion of the Kelvin–Voight fluids (50)
(see Theorems 8–9),
\item[] equations of the motion of the Kelvin–Voight fluids order
$L=1,2,\dots$ (97) and (99),
\item[] the system of the “Oskolkov equations” (90), (91),
\item[] similinear pseudoparabolic equations (76) with $p\leqslant3$ and
(85), (86) (see Theorems 10–11).
@article{ZNSL_1992_199_a7,
author = {A. A. Kotsiolis and A. P. Oskolkov and R. D. Shadiev},
title = {Nonlocal problems for some class nonlinear dissipative {Sobolev} type equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--113},
publisher = {mathdoc},
volume = {199},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a7/}
}
TY - JOUR AU - A. A. Kotsiolis AU - A. P. Oskolkov AU - R. D. Shadiev TI - Nonlocal problems for some class nonlinear dissipative Sobolev type equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 91 EP - 113 VL - 199 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a7/ LA - ru ID - ZNSL_1992_199_a7 ER -
%0 Journal Article %A A. A. Kotsiolis %A A. P. Oskolkov %A R. D. Shadiev %T Nonlocal problems for some class nonlinear dissipative Sobolev type equations %J Zapiski Nauchnykh Seminarov POMI %D 1992 %P 91-113 %V 199 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a7/ %G ru %F ZNSL_1992_199_a7
A. A. Kotsiolis; A. P. Oskolkov; R. D. Shadiev. Nonlocal problems for some class nonlinear dissipative Sobolev type equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 91-113. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a7/