$q$-Hermite polynomials and $q$-oscillators
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 81-90
Voir la notice de l'article provenant de la source Math-Net.Ru
New $q$-analog of Hermite polynomials was suggested. This definition was based on the notion of deformed oscillator and related with symmetric, with respect to replacement $q\leftrightarrow q^{-1}$, form of $q$-analysis.
@article{ZNSL_1992_199_a6,
author = {E. V. Damaskinsky and P. P. Kulish},
title = {$q${-Hermite} polynomials and $q$-oscillators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {81--90},
publisher = {mathdoc},
volume = {199},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a6/}
}
E. V. Damaskinsky; P. P. Kulish. $q$-Hermite polynomials and $q$-oscillators. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 81-90. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a6/