$q$-Hermite polynomials and $q$-oscillators
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 81-90

Voir la notice de l'article provenant de la source Math-Net.Ru

New $q$-analog of Hermite polynomials was suggested. This definition was based on the notion of deformed oscillator and related with symmetric, with respect to replacement $q\leftrightarrow q^{-1}$, form of $q$-analysis.
@article{ZNSL_1992_199_a6,
     author = {E. V. Damaskinsky and P. P. Kulish},
     title = {$q${-Hermite} polynomials and $q$-oscillators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {199},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a6/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
AU  - P. P. Kulish
TI  - $q$-Hermite polynomials and $q$-oscillators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 81
EP  - 90
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a6/
LA  - ru
ID  - ZNSL_1992_199_a6
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%A P. P. Kulish
%T $q$-Hermite polynomials and $q$-oscillators
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 81-90
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a6/
%G ru
%F ZNSL_1992_199_a6
E. V. Damaskinsky; P. P. Kulish. $q$-Hermite polynomials and $q$-oscillators. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 81-90. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a6/