Exact solutions of nonlinear sigma-model in curved space and the theory of media with variable saturation magnetization
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 71-80

Voir la notice de l'article provenant de la source Math-Net.Ru

The stationary solitons in two-dimensional media with variable saturation magnetization being the harmonic function of coordinates are found. It is shown that Landau–Lifshitz equation in this case can be reduced to integrable $O(3)$ sigma-model in curved space. Some properties of solutions being obtained are discussed.
@article{ZNSL_1992_199_a5,
     author = {E. Sh. Gutshabash and V. D. Lipovsky},
     title = {Exact solutions of nonlinear sigma-model in curved space and the theory of media with variable saturation magnetization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {199},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a5/}
}
TY  - JOUR
AU  - E. Sh. Gutshabash
AU  - V. D. Lipovsky
TI  - Exact solutions of nonlinear sigma-model in curved space and the theory of media with variable saturation magnetization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 71
EP  - 80
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a5/
LA  - ru
ID  - ZNSL_1992_199_a5
ER  - 
%0 Journal Article
%A E. Sh. Gutshabash
%A V. D. Lipovsky
%T Exact solutions of nonlinear sigma-model in curved space and the theory of media with variable saturation magnetization
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 71-80
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a5/
%G ru
%F ZNSL_1992_199_a5
E. Sh. Gutshabash; V. D. Lipovsky. Exact solutions of nonlinear sigma-model in curved space and the theory of media with variable saturation magnetization. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 71-80. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a5/