Non-commutative differential geometry related to the Yang--Baxter equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 51-70
Voir la notice de l'article provenant de la source Math-Net.Ru
An analogue of the differential calculus associated with a unitary solution of quantum Yang–Baxter equation is constructed. An example of a ring sheaf is given in which local solutions of the quantum Yang–Baxter equation exist but not global ones.
@article{ZNSL_1992_199_a4,
author = {D. Gurevich and A. Radul and V. Rubzov},
title = {Non-commutative differential geometry related to the {Yang--Baxter} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {51--70},
publisher = {mathdoc},
volume = {199},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a4/}
}
TY - JOUR AU - D. Gurevich AU - A. Radul AU - V. Rubzov TI - Non-commutative differential geometry related to the Yang--Baxter equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 51 EP - 70 VL - 199 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a4/ LA - ru ID - ZNSL_1992_199_a4 ER -
D. Gurevich; A. Radul; V. Rubzov. Non-commutative differential geometry related to the Yang--Baxter equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 51-70. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a4/