Non-commutative differential geometry related to the Yang--Baxter equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 51-70

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the differential calculus associated with a unitary solution of quantum Yang–Baxter equation is constructed. An example of a ring sheaf is given in which local solutions of the quantum Yang–Baxter equation exist but not global ones.
@article{ZNSL_1992_199_a4,
     author = {D. Gurevich and A. Radul and V. Rubzov},
     title = {Non-commutative differential geometry related to the {Yang--Baxter} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--70},
     publisher = {mathdoc},
     volume = {199},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a4/}
}
TY  - JOUR
AU  - D. Gurevich
AU  - A. Radul
AU  - V. Rubzov
TI  - Non-commutative differential geometry related to the Yang--Baxter equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 51
EP  - 70
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a4/
LA  - ru
ID  - ZNSL_1992_199_a4
ER  - 
%0 Journal Article
%A D. Gurevich
%A A. Radul
%A V. Rubzov
%T Non-commutative differential geometry related to the Yang--Baxter equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 51-70
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a4/
%G ru
%F ZNSL_1992_199_a4
D. Gurevich; A. Radul; V. Rubzov. Non-commutative differential geometry related to the Yang--Baxter equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 51-70. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a4/