Integrable boundary-value problems and nonlinear Fourier harmonics
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 43-50

Voir la notice de l'article provenant de la source Math-Net.Ru

An integrable boundary-value problem on a segment for $NS$ model is considered. A concept of nonlinear $\theta$-harmonics for this problem is proposed. An exact solution of the integrable problem on the semiaxis is given with the help of reduction to whole axis case.
@article{ZNSL_1992_199_a3,
     author = {R. F. Bikbaev},
     title = {Integrable boundary-value problems and nonlinear {Fourier} harmonics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {199},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a3/}
}
TY  - JOUR
AU  - R. F. Bikbaev
TI  - Integrable boundary-value problems and nonlinear Fourier harmonics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 43
EP  - 50
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a3/
LA  - ru
ID  - ZNSL_1992_199_a3
ER  - 
%0 Journal Article
%A R. F. Bikbaev
%T Integrable boundary-value problems and nonlinear Fourier harmonics
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 43-50
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a3/
%G ru
%F ZNSL_1992_199_a3
R. F. Bikbaev. Integrable boundary-value problems and nonlinear Fourier harmonics. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 43-50. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a3/