Integrable boundary-value problems and nonlinear Fourier harmonics
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 43-50
Voir la notice de l'article provenant de la source Math-Net.Ru
An integrable boundary-value problem on a segment for $NS$ model is considered. A concept of nonlinear $\theta$-harmonics for this problem is proposed. An exact solution of the integrable problem on the semiaxis is given with the help of reduction to whole axis case.
@article{ZNSL_1992_199_a3,
author = {R. F. Bikbaev},
title = {Integrable boundary-value problems and nonlinear {Fourier} harmonics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {43--50},
publisher = {mathdoc},
volume = {199},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a3/}
}
R. F. Bikbaev. Integrable boundary-value problems and nonlinear Fourier harmonics. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 11, Tome 199 (1992), pp. 43-50. http://geodesic.mathdoc.fr/item/ZNSL_1992_199_a3/