On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 87-119
Cet article a éte moissonné depuis la source Math-Net.Ru
Solutions of the initial boundary value problem for Navier–Stokes equations are approximated by solutions of the initial boundary value problem \begin{gather*} \partial_t u(t)+u_k(t)\partial_ku(t)-\nu\Delta u(t)-\frac1\varepsilon\nabla\mathrm{div}\,u(t)+\frac12u(t)\mathrm{div}\,u(t)=f(t),\\ u(0)=u_0\text{ in }\Omega;\quad u(t)=0\text{ on }\partial\Omega. \end{gather*} We study proximity of solutions of these problems in suitable norms and also proximity of their minimal global $B$-attractors.
@article{ZNSL_1992_197_a4,
author = {O. A. Ladyzhenskaya and G. A. Seregin},
title = {On some way of the approximation of solutions of initial boundary value problems for {Navier{\textendash}Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--119},
year = {1992},
volume = {197},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/}
}
TY - JOUR AU - O. A. Ladyzhenskaya AU - G. A. Seregin TI - On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 87 EP - 119 VL - 197 UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/ LA - ru ID - ZNSL_1992_197_a4 ER -
%0 Journal Article %A O. A. Ladyzhenskaya %A G. A. Seregin %T On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations %J Zapiski Nauchnykh Seminarov POMI %D 1992 %P 87-119 %V 197 %U http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/ %G ru %F ZNSL_1992_197_a4
O. A. Ladyzhenskaya; G. A. Seregin. On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 87-119. http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/