On some way of the approximation of solutions of initial boundary value problems for Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 87-119

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions of the initial boundary value problem for Navier–Stokes equations are approximated by solutions of the initial boundary value problem \begin{gather*} \partial_t u(t)+u_k(t)\partial_ku(t)-\nu\Delta u(t)-\frac1\varepsilon\nabla\mathrm{div}\,u(t)+\frac12u(t)\mathrm{div}\,u(t)=f(t),\\ u(0)=u_0\text{ in }\Omega;\quad u(t)=0\text{ on }\partial\Omega. \end{gather*} We study proximity of solutions of these problems in suitable norms and also proximity of their minimal global $B$-attractors.
@article{ZNSL_1992_197_a4,
     author = {O. A. Ladyzhenskaya and G. A. Seregin},
     title = {On some way of the approximation of solutions of initial boundary value problems for {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--119},
     publisher = {mathdoc},
     volume = {197},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/}
}
TY  - JOUR
AU  - O. A. Ladyzhenskaya
AU  - G. A. Seregin
TI  - On some way of the approximation of solutions of initial boundary value problems for Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 87
EP  - 119
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/
LA  - ru
ID  - ZNSL_1992_197_a4
ER  - 
%0 Journal Article
%A O. A. Ladyzhenskaya
%A G. A. Seregin
%T On some way of the approximation of solutions of initial boundary value problems for Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 87-119
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/
%G ru
%F ZNSL_1992_197_a4
O. A. Ladyzhenskaya; G. A. Seregin. On some way of the approximation of solutions of initial boundary value problems for Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 87-119. http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a4/