The classes $\mathcal{B}_{m,l}$ and H\"older estimates for quasilinear doubly degenerate parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 42-70

Voir la notice de l'article provenant de la source Math-Net.Ru

Inner and boundary Hölder estimates for nonnegative weak solutions of quasilinear doubly degenerate parabolic equations are established. The proof of these results is based on studing some classes $\mathcal{B}_{m,l}$ which can be considered as an extensions of the classes $\mathcal{B}_2$ introduced by Ladyzhenskaya–Uraltseva and the classes $\mathcal{B}_m$ introduced by DiBenedetto. Imbedding of the classes $\mathcal{B}_{m,l}$ in appropriate Hölder spaces is proved.
@article{ZNSL_1992_197_a2,
     author = {A. V. Ivanov},
     title = {The classes $\mathcal{B}_{m,l}$ and {H\"older} estimates for quasilinear doubly degenerate parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--70},
     publisher = {mathdoc},
     volume = {197},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - The classes $\mathcal{B}_{m,l}$ and H\"older estimates for quasilinear doubly degenerate parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 42
EP  - 70
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/
LA  - ru
ID  - ZNSL_1992_197_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T The classes $\mathcal{B}_{m,l}$ and H\"older estimates for quasilinear doubly degenerate parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 42-70
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/
%G ru
%F ZNSL_1992_197_a2
A. V. Ivanov. The classes $\mathcal{B}_{m,l}$ and H\"older estimates for quasilinear doubly degenerate parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 42-70. http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/