The classes $\mathcal{B}_{m,l}$ and Hölder estimates for quasilinear doubly degenerate parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 42-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Inner and boundary Hölder estimates for nonnegative weak solutions of quasilinear doubly degenerate parabolic equations are established. The proof of these results is based on studing some classes $\mathcal{B}_{m,l}$ which can be considered as an extensions of the classes $\mathcal{B}_2$ introduced by Ladyzhenskaya–Uraltseva and the classes $\mathcal{B}_m$ introduced by DiBenedetto. Imbedding of the classes $\mathcal{B}_{m,l}$ in appropriate Hölder spaces is proved.
@article{ZNSL_1992_197_a2,
     author = {A. V. Ivanov},
     title = {The classes $\mathcal{B}_{m,l}$ and {H\"older} estimates for quasilinear doubly degenerate parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--70},
     year = {1992},
     volume = {197},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - The classes $\mathcal{B}_{m,l}$ and Hölder estimates for quasilinear doubly degenerate parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 42
EP  - 70
VL  - 197
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/
LA  - ru
ID  - ZNSL_1992_197_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T The classes $\mathcal{B}_{m,l}$ and Hölder estimates for quasilinear doubly degenerate parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 42-70
%V 197
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/
%G ru
%F ZNSL_1992_197_a2
A. V. Ivanov. The classes $\mathcal{B}_{m,l}$ and Hölder estimates for quasilinear doubly degenerate parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 42-70. http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a2/