On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 28-41
Voir la notice de l'article provenant de la source Math-Net.Ru
For the system of $n$ identical particles at the homogeneous magnetic field the discrete spectrum of the Hamiltonian $\mathcal{H}^{\alpha,m}$ on the subspaces of the functions with the permutational symmetry $\alpha$ and rotational ($SO(2)$) symmetry $m$ is studied when $m\to\infty$. It is prooved that if some conditions are satisfied there is only one eigenvalue at the discrete spectrum of the operator $\mathcal{H}^{\alpha,m}$. The asymptotics of this eigenvalue for $m\to\infty$ have been found.
@article{ZNSL_1992_197_a1,
author = {S. A. Vugal'ter and G. M. Zhislin},
title = {On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {28--41},
publisher = {mathdoc},
volume = {197},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/}
}
TY - JOUR AU - S. A. Vugal'ter AU - G. M. Zhislin TI - On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field JO - Zapiski Nauchnykh Seminarov POMI PY - 1992 SP - 28 EP - 41 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/ LA - ru ID - ZNSL_1992_197_a1 ER -
%0 Journal Article %A S. A. Vugal'ter %A G. M. Zhislin %T On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field %J Zapiski Nauchnykh Seminarov POMI %D 1992 %P 28-41 %V 197 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/ %G ru %F ZNSL_1992_197_a1
S. A. Vugal'ter; G. M. Zhislin. On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 28-41. http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/