On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 28-41

Voir la notice de l'article provenant de la source Math-Net.Ru

For the system of $n$ identical particles at the homogeneous magnetic field the discrete spectrum of the Hamiltonian $\mathcal{H}^{\alpha,m}$ on the subspaces of the functions with the permutational symmetry $\alpha$ and rotational ($SO(2)$) symmetry $m$ is studied when $m\to\infty$. It is prooved that if some conditions are satisfied there is only one eigenvalue at the discrete spectrum of the operator $\mathcal{H}^{\alpha,m}$. The asymptotics of this eigenvalue for $m\to\infty$ have been found.
@article{ZNSL_1992_197_a1,
     author = {S. A. Vugal'ter and G. M. Zhislin},
     title = {On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--41},
     publisher = {mathdoc},
     volume = {197},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/}
}
TY  - JOUR
AU  - S. A. Vugal'ter
AU  - G. M. Zhislin
TI  - On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 28
EP  - 41
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/
LA  - ru
ID  - ZNSL_1992_197_a1
ER  - 
%0 Journal Article
%A S. A. Vugal'ter
%A G. M. Zhislin
%T On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 28-41
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/
%G ru
%F ZNSL_1992_197_a1
S. A. Vugal'ter; G. M. Zhislin. On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 28-41. http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a1/