$L_2$-estimates for solutions of the general boundary-value problems for the equations with mixed parabolic-elliptic structure
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 4-27

Voir la notice de l'article provenant de la source Math-Net.Ru

$L_2$-estimates for solutions of the model boundary value problems — Cauchy problem and semispace problem — for linear equation $L\left(\frac\partial{\partial x}, \frac\partial{\partial t}\right)u=0$ in which operator $L$ is product $2b_1$-parabolic operator and $2b_2r$-elliptic operator ($b_1$, $b_2$, $r$ — integer numbers) are obtained.
@article{ZNSL_1992_197_a0,
     author = {M. A. Abdrachmanov},
     title = {$L_2$-estimates for solutions of the general boundary-value problems for the equations with mixed parabolic-elliptic structure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {4--27},
     publisher = {mathdoc},
     volume = {197},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a0/}
}
TY  - JOUR
AU  - M. A. Abdrachmanov
TI  - $L_2$-estimates for solutions of the general boundary-value problems for the equations with mixed parabolic-elliptic structure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1992
SP  - 4
EP  - 27
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a0/
LA  - ru
ID  - ZNSL_1992_197_a0
ER  - 
%0 Journal Article
%A M. A. Abdrachmanov
%T $L_2$-estimates for solutions of the general boundary-value problems for the equations with mixed parabolic-elliptic structure
%J Zapiski Nauchnykh Seminarov POMI
%D 1992
%P 4-27
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a0/
%G ru
%F ZNSL_1992_197_a0
M. A. Abdrachmanov. $L_2$-estimates for solutions of the general boundary-value problems for the equations with mixed parabolic-elliptic structure. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 23, Tome 197 (1992), pp. 4-27. http://geodesic.mathdoc.fr/item/ZNSL_1992_197_a0/