Absence of singularities of Gaussian beams in diffusion equation case
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 21, Tome 195 (1991), pp. 14-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The diffusion equation in the case of point source is considered: $$ \varepsilon\frac1h\frac{\partial}{\partial x^i}\left(D^{ij}h\frac{\partial c}{\partial x^j}\right)-U^i\frac{\partial c}{\partial x^i}=-A\delta(x-x_0),\quad x=x^1,\dots,x^m,\quad x_0=x_0^1,\dots,x_0^m, $$ where $\varepsilon$ is a small parameter. The asymptotic expansion of $c$ reduces to Gaussian beam solution concentrated in a small neighbourhood of the curve $l$, which is solution of the system of differential equation: $$ \frac{d}{d\,s}x^i=U^i,\quad x^i\mid_{s=0}=x_0^i. $$ Absence of singularities of Gaussian beams is proved.
@article{ZNSL_1991_195_a1,
     author = {V. M. Babich},
     title = {Absence of singularities of {Gaussian} beams in diffusion equation case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--18},
     year = {1991},
     volume = {195},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_195_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - Absence of singularities of Gaussian beams in diffusion equation case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 14
EP  - 18
VL  - 195
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_195_a1/
LA  - ru
ID  - ZNSL_1991_195_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T Absence of singularities of Gaussian beams in diffusion equation case
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 14-18
%V 195
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_195_a1/
%G ru
%F ZNSL_1991_195_a1
V. M. Babich. Absence of singularities of Gaussian beams in diffusion equation case. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 21, Tome 195 (1991), pp. 14-18. http://geodesic.mathdoc.fr/item/ZNSL_1991_195_a1/