Absence of singularities of Gaussian beams in diffusion equation case
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 21, Tome 195 (1991), pp. 14-18
Cet article a éte moissonné depuis la source Math-Net.Ru
The diffusion equation in the case of point source is considered: $$ \varepsilon\frac1h\frac{\partial}{\partial x^i}\left(D^{ij}h\frac{\partial c}{\partial x^j}\right)-U^i\frac{\partial c}{\partial x^i}=-A\delta(x-x_0),\quad x=x^1,\dots,x^m,\quad x_0=x_0^1,\dots,x_0^m, $$ where $\varepsilon$ is a small parameter. The asymptotic expansion of $c$ reduces to Gaussian beam solution concentrated in a small neighbourhood of the curve $l$, which is solution of the system of differential equation: $$ \frac{d}{d\,s}x^i=U^i,\quad x^i\mid_{s=0}=x_0^i. $$ Absence of singularities of Gaussian beams is proved.
@article{ZNSL_1991_195_a1,
author = {V. M. Babich},
title = {Absence of singularities of {Gaussian} beams in diffusion equation case},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--18},
year = {1991},
volume = {195},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_195_a1/}
}
V. M. Babich. Absence of singularities of Gaussian beams in diffusion equation case. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 21, Tome 195 (1991), pp. 14-18. http://geodesic.mathdoc.fr/item/ZNSL_1991_195_a1/