Some congruences for real algebraic curves on an ellipsoid
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 90-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some analogues of Gudkov–Rohlin, Kharlamov–Gudkov–Krakhnov, Kharlamov–Marin congruences are obtained in this paper for curves of odd degree on an ellipsoid. An analogue of Fiedler congruence is obtained for curves of even degree on an ellipsoid. In the appendix some generalizations of Rohlin and Kharlamov–Gudkov–Krakhnov congruences for curves oh surfaces are announced.
@article{ZNSL_1991_193_a5,
     author = {G. B. Mikhalkin},
     title = {Some congruences for real algebraic curves on an ellipsoid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--100},
     year = {1991},
     volume = {193},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a5/}
}
TY  - JOUR
AU  - G. B. Mikhalkin
TI  - Some congruences for real algebraic curves on an ellipsoid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 90
EP  - 100
VL  - 193
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a5/
LA  - ru
ID  - ZNSL_1991_193_a5
ER  - 
%0 Journal Article
%A G. B. Mikhalkin
%T Some congruences for real algebraic curves on an ellipsoid
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 90-100
%V 193
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a5/
%G ru
%F ZNSL_1991_193_a5
G. B. Mikhalkin. Some congruences for real algebraic curves on an ellipsoid. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 90-100. http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a5/