Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 39-63

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper links in $\mathbb{R}\mathrm{p}^3$ posessing diagrams with at most 6 crossings are classified up to isotopy and homeomorphism.
@article{ZNSL_1991_193_a2,
     author = {Yu. V. Drobotukhina},
     title = {Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--63},
     publisher = {mathdoc},
     volume = {193},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a2/}
}
TY  - JOUR
AU  - Yu. V. Drobotukhina
TI  - Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 39
EP  - 63
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a2/
LA  - ru
ID  - ZNSL_1991_193_a2
ER  - 
%0 Journal Article
%A Yu. V. Drobotukhina
%T Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 39-63
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a2/
%G ru
%F ZNSL_1991_193_a2
Yu. V. Drobotukhina. Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 39-63. http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a2/