Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 39-63
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper links in $\mathbb{R}\mathrm{p}^3$ posessing diagrams with at most 6 crossings are classified up to isotopy and homeomorphism.
@article{ZNSL_1991_193_a2,
author = {Yu. V. Drobotukhina},
title = {Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--63},
publisher = {mathdoc},
volume = {193},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a2/}
}
Yu. V. Drobotukhina. Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 39-63. http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a2/