Classification of quartics possessing a non-simple singular point.~II
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 10-38

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to comparing two classifications, up to rigid isotopy and up to $PL$-homeomorphism, of surfaces of degree 4 in $\mathbb{C}p^3$ (quartics) possessing at least one non-simple singular point. The main $PL$-invariant to distinguish quartics is the obvious lattice morphism $\oplus M(O_i)\oplus4>\mapsto K3$, $M(O_i)$ being the Milnor lattices of all the singular points of the quartic and $K3=2E_8\oplus3U$ being the intersection lattice of a nonsingular quartic. The main result is the following theorem. THEOREM. With the exception of several cases a quartic $V$ is determined up to rigid isotopy by the corresponding lattice morphism. The exceptions are some quartics with the singular set of the type $X_9+\sum A_{2p_i-1}+\sum D_{2q_j}$, $\sum p_i+\sum(q_j+1)$ being equal to 6 or 7. Some auxiliary results of the paper also may be of interest: the relation between the Milnor lattice of a singularity and the lattice of its resolution is established. This provides algebraically clear description of the Milnor lattices of most singularities.
@article{ZNSL_1991_193_a1,
     author = {A. I. Degtyarev},
     title = {Classification of quartics possessing a non-simple singular {point.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {10--38},
     publisher = {mathdoc},
     volume = {193},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a1/}
}
TY  - JOUR
AU  - A. I. Degtyarev
TI  - Classification of quartics possessing a non-simple singular point.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 10
EP  - 38
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a1/
LA  - ru
ID  - ZNSL_1991_193_a1
ER  - 
%0 Journal Article
%A A. I. Degtyarev
%T Classification of quartics possessing a non-simple singular point.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 10-38
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a1/
%G ru
%F ZNSL_1991_193_a1
A. I. Degtyarev. Classification of quartics possessing a non-simple singular point.~II. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 10-38. http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a1/