A new form of the Conway--Jones polynomial of oriented links
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 4-9

Voir la notice de l'article provenant de la source Math-Net.Ru

A new invariant polynomial $f$ of an oriented link is constructed. It is shown to be reducible to the Conway–Jones polynomials of the link and of its sublinks, on the other hand the Conway–Jones polynomial is reducible to the new one. If $L$ is a split link, then $f_L=0$. A new notion is introduced: a link invariant of a finite degree. The polynomial $f$ consists of an infinite system of invariants of finite degrees.
@article{ZNSL_1991_193_a0,
     author = {M. N. Gusarov},
     title = {A new form of the {Conway--Jones} polynomial of oriented links},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {4--9},
     publisher = {mathdoc},
     volume = {193},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a0/}
}
TY  - JOUR
AU  - M. N. Gusarov
TI  - A new form of the Conway--Jones polynomial of oriented links
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 4
EP  - 9
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a0/
LA  - ru
ID  - ZNSL_1991_193_a0
ER  - 
%0 Journal Article
%A M. N. Gusarov
%T A new form of the Conway--Jones polynomial of oriented links
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 4-9
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a0/
%G ru
%F ZNSL_1991_193_a0
M. N. Gusarov. A new form of the Conway--Jones polynomial of oriented links. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 1, Tome 193 (1991), pp. 4-9. http://geodesic.mathdoc.fr/item/ZNSL_1991_193_a0/