Construction of a shortest path around semi-algebraic obstacles in the plane
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 5, Tome 192 (1991), pp. 163-173
Cet article a éte moissonné depuis la source Math-Net.Ru
The authors describe an algorithm that in polynomial time reduces the problem of finding a shortest path (between 2 points) not intersecting semi-algebraic obstacles in the plane, to the problem of finding a least cost path in a graph which vertex cests are integrals of positive algebraic functions (without singularities). As a consequence one gets an algorithm which in time polynomial in the leagth of input and $1/\varepsilon$, constructs an $\varepsilon$-approximation to a shortest path. Related problems and results are briefly discussed.
@article{ZNSL_1991_192_a7,
author = {T. Krick and A. O. Slissenko and P. Solern\'o and J. Heintz},
title = {Construction of a shortest path around semi-algebraic obstacles in the plane},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {163--173},
year = {1991},
volume = {192},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_192_a7/}
}
TY - JOUR AU - T. Krick AU - A. O. Slissenko AU - P. Solernó AU - J. Heintz TI - Construction of a shortest path around semi-algebraic obstacles in the plane JO - Zapiski Nauchnykh Seminarov POMI PY - 1991 SP - 163 EP - 173 VL - 192 UR - http://geodesic.mathdoc.fr/item/ZNSL_1991_192_a7/ LA - ru ID - ZNSL_1991_192_a7 ER -
T. Krick; A. O. Slissenko; P. Solernó; J. Heintz. Construction of a shortest path around semi-algebraic obstacles in the plane. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 5, Tome 192 (1991), pp. 163-173. http://geodesic.mathdoc.fr/item/ZNSL_1991_192_a7/