Computation of exponential integrals
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 5, Tome 192 (1991), pp. 149-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P\subset\mathbb{R}^d$ be a convex full-dimensional polytope and $f:\mathbb{R}^d\mapsto\mathbb{R}$ be a linear function. The computational complexity of the integral $\int_P\exp\{f(x)\}d\,x$ is studied. It is shown that these integrals are subjected to certain non-trivial algebraic relations that makes it possible to design polynomial-time algorithms for some polytopes. Applications of exponential integrals to computation of volume and to non-linear programming are given.
@article{ZNSL_1991_192_a6,
     author = {A. I. Barvinok},
     title = {Computation of exponential integrals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--162},
     publisher = {mathdoc},
     volume = {192},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_192_a6/}
}
TY  - JOUR
AU  - A. I. Barvinok
TI  - Computation of exponential integrals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 149
EP  - 162
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_192_a6/
LA  - ru
ID  - ZNSL_1991_192_a6
ER  - 
%0 Journal Article
%A A. I. Barvinok
%T Computation of exponential integrals
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 149-162
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_192_a6/
%G ru
%F ZNSL_1991_192_a6
A. I. Barvinok. Computation of exponential integrals. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 5, Tome 192 (1991), pp. 149-162. http://geodesic.mathdoc.fr/item/ZNSL_1991_192_a6/