Gauge group and gauge transformation in the continual theory of defects
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 173-184
Voir la notice de l'article provenant de la source Math-Net.Ru
Representation of the algebra $\mathfrak{g}(3)=t(3)\oplus so(3,\mathbb{R})$ by differential Schaefer's operators is proposed, exterior calculus of $\mathfrak{g}(3)$-valued differential forms is developed. The formulation of the requirement of local gauge invariance in the model with $\mathfrak{g}(3)$-valued fields permits one to obtain gauge transformation group of the continual theory of defects.
@article{ZNSL_1991_190_a9,
author = {K. L. Malyshev},
title = {Gauge group and gauge transformation in the continual theory of defects},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--184},
publisher = {mathdoc},
volume = {190},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a9/}
}
K. L. Malyshev. Gauge group and gauge transformation in the continual theory of defects. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 173-184. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a9/