Gauge group and gauge transformation in the continual theory of defects
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 173-184

Voir la notice de l'article provenant de la source Math-Net.Ru

Representation of the algebra $\mathfrak{g}(3)=t(3)\oplus so(3,\mathbb{R})$ by differential Schaefer's operators is proposed, exterior calculus of $\mathfrak{g}(3)$-valued differential forms is developed. The formulation of the requirement of local gauge invariance in the model with $\mathfrak{g}(3)$-valued fields permits one to obtain gauge transformation group of the continual theory of defects.
@article{ZNSL_1991_190_a9,
     author = {K. L. Malyshev},
     title = {Gauge group and gauge transformation in the continual theory of defects},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {190},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a9/}
}
TY  - JOUR
AU  - K. L. Malyshev
TI  - Gauge group and gauge transformation in the continual theory of defects
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 173
EP  - 184
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a9/
LA  - ru
ID  - ZNSL_1991_190_a9
ER  - 
%0 Journal Article
%A K. L. Malyshev
%T Gauge group and gauge transformation in the continual theory of defects
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 173-184
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a9/
%G ru
%F ZNSL_1991_190_a9
K. L. Malyshev. Gauge group and gauge transformation in the continual theory of defects. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 173-184. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a9/