On the discrete spectrum of a perturbed periodic Schr\"odinger operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 157-162

Voir la notice de l'article provenant de la source Math-Net.Ru

A perturbed periodic Schrödinger operator is considered. Conditions for the discrete spectrum in a gap to be finite or infinite are stated. In the case of infinite spectrum a standard asymptotic formula for eigenvalues is justified under certain conditions. The results are formulated in terms of a model problem.
@article{ZNSL_1991_190_a7,
     author = {S. V. Khryashchev},
     title = {On the discrete spectrum of a perturbed periodic {Schr\"odinger} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--162},
     publisher = {mathdoc},
     volume = {190},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a7/}
}
TY  - JOUR
AU  - S. V. Khryashchev
TI  - On the discrete spectrum of a perturbed periodic Schr\"odinger operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 157
EP  - 162
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a7/
LA  - ru
ID  - ZNSL_1991_190_a7
ER  - 
%0 Journal Article
%A S. V. Khryashchev
%T On the discrete spectrum of a perturbed periodic Schr\"odinger operator
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 157-162
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a7/
%G ru
%F ZNSL_1991_190_a7
S. V. Khryashchev. On the discrete spectrum of a perturbed periodic Schr\"odinger operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 157-162. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a7/