Operator algebras and invariant subspaces lattices. II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 110-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Given a bounded linear operator $T$, we study the following questions: when the сommutant $\{T\}'$ is commutative; when each operator in the bicommutant $\{T\}''$ can be approximated by polynomials of $T$ in the weak operator topology, the problem of reflexivity, and others. These questions are solved for some classes of operators.
@article{ZNSL_1991_190_a5,
     author = {V. V. Kapustin and A. V. Lipin},
     title = {Operator algebras and invariant subspaces {lattices.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--147},
     year = {1991},
     volume = {190},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a5/}
}
TY  - JOUR
AU  - V. V. Kapustin
AU  - A. V. Lipin
TI  - Operator algebras and invariant subspaces lattices. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 110
EP  - 147
VL  - 190
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a5/
LA  - ru
ID  - ZNSL_1991_190_a5
ER  - 
%0 Journal Article
%A V. V. Kapustin
%A A. V. Lipin
%T Operator algebras and invariant subspaces lattices. II
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 110-147
%V 190
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a5/
%G ru
%F ZNSL_1991_190_a5
V. V. Kapustin; A. V. Lipin. Operator algebras and invariant subspaces lattices. II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 110-147. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a5/